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Abstract

A multi-layer neural network is constructed to describe the thermal decomposition of rhodium ace-

tate. Critical analysis of the residual, trained, interpolated and extrapolated errors, with the number

of neurons, indicates the efficiency of the present approach. It was possible, within this framework,

to improve the An model, with a better correlation between the results. A new value of the activation

energy, Ea, and frequency factor, Z, are calculated for the decomposition process. Since the neural

network is more precise than a particular model, the calculated values for these quantities are be-

lieved to be more precise. The computed values are Ea=194.0 kJ mol–1 and Z=5.23·1016 s–1. The neu-

ral network eliminates the step to decide, among the available models, the one that best fit the data.

An agreement up to four significant figures can be achieved even for data not used in the training

process, both in the interpolated and extrapolated regions. This method suggests, therefore, an im-

portant alternative tool for the experimentalists. The present approach can also be adapted to other

systems and to data in two dimensions.
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Introduction

Theoretical foundation of solid-state decomposition kinetics is based on growth and

diffusion of particles, from which several models are proposed to describe the pro-

cess [1]. A fitting procedure will decide, among the possible models, the one that best

adjust to the data. Nevertheless, some models can give errors of comparable magni-

tude, preventing a correct choice of the model, which is best adapted to the experi-

mental situation. In several occasions, even the minimum residual error is not accept-

able for the models available [2]. Some models can also describe better different

regions of the decomposition, which makes the selection of the best model only a first

approximation to describe the decomposition kinetics.

An alternative approach, using multi-layer neural network [3], will be discussed

in the present work. The similarity between the nervous impulse and the time depend-
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ence of the weight fraction was, in fact, the initial motivation to apply this framework

to the thermal decomposition problem. It is, therefore, expected that the neural net-

work will work properly when applied to this process.

This artificial intelligence method also avoids the usage of specific models al-

though the chemical meaning is lost for more than one neuron. Nevertheless, as will

be discussed, this approach can be very useful when dealing with experimental data.

Before a certain limit on the number of neurons this scheme will converge to desired

accuracy, the precision being superior to those given by the usage of any thermal de-

composition models previous described in the literature.

The rhodium(II) acetate system [4] will be taken as a model to illustrate the ap-

plicability of the neural network approach. The computed values of the mass fraction

as a function of time, activation energy and frequency factor are compared with ex-

perimental data and previous reported results [4]. Since models of comparable accu-

racy can give different activation energy values [5], the precision of the above ap-

proach will give new, and more reliable, results for this quantity.

Neural network theoretical background

Computer codes that simulate the brain operation are generally termed neural net-

work [3]. These softwares will simulate the transmission of information through synap-

tic connections and nervous impulse. As in the brain operation, neural networks codes

also operate in parallel and, therefore, should be very efficient. It is expected also that

neural network have the capability of learning from data, predict information not used

in the training process and to establish a relationship between input and output.

For the input data denoted by i=[i1, i2, ...,im]T and output o=[o1, o2, ...o3]
T one de-

fines the sum at each neuron

s w ij =∑ jk k

k= 1

l

(1)

where wjk simulates the synaptic connection between the neurons k and j.
An activation function, i.e., a function that reproduces the nervous impulse, ap-

plied to this sum defines the state of the neuron,

yj=f(sj) (2)

The logarithm sigmoidal activation function, f s( ) /( )j

–s
e j= +1 1 , was used in the

present work. The similarity between this kind of impulse and thermal decomposition

model, the An model, is obvious at this point.

This process, illustrated for one neuron in Fig. 1, can be used for several neurons

and adapted into a multi-layer neural network. The arrangement of the neurons into

layers is the neural network architecture.

The learning process is based on minimizing the errors between computed neu-

ral network output and the experimental data, which is achieved by adjusting the val-

ues of the connections in the hidden and output layers. Since, at the kth layer the neu-
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ron state is represented by yk(w), as a generalization of (2), w being a vector describ-

ing the values of the connections, the quadratic error can be written as,

E w o y w e w( ) ( ( )) ( ))= − =∑ ∑k

k

k

k

(2 2 (3)

The solution that minimizes the above error can be found by using several opti-

mization techniques, among them, the back-propagation algorithm [6], the recurrent

neural network method [7] and the regularized method, to be described here.

Defining the vectors e(w) = (e1, e2, ..., em)T and assuming a solution occurs at

w+δw, that is E(w+δw) = 0, the minimum of (3) will be equivalent to solve, in a recur-

rent way, the linear system [3]

J(w)δw = –e(w) (4)

The quantity J is the Jacobian of the error with respect to the values of the connec-

tions and has dimension m×n, m being the number of data and n the number of values

of the connections in the neural network architecture. As a consequence of J being

ill-conditioned, special techniques to solve (4) have to be applied. The one adopted here

was to regularize the Jacobian matrix, implying the new system to be solved will be,

(JTJ+λI)δw = –JTe (5)

in which I is the identity matrix and a regularized parameter.

The Levenberg–Marquardt algorithm [8, 9], or the equivalent first order Tikhonov

regularization [10, 11], was chosen to find the above solution. The regularized parame-

ter is found by changing its value according to the direction of the total error. The com-

puter calculations described here were performed using the Matlab software [12].

The reference system

The amount of mass lost at time t normalized to the total mass lost, quantity denoted

by α, is used to analyze the thermal decomposition process. The neural network effi-

ciency was tested from the data published in [4], at the temperatures 198, 202.5,

203.5, 205.0, 207.0, 209.0 and 210.5°C, where it was found that the An model
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Fig. 1 Structure of a basic neuron



α( )
)

t =
+

1

1 e
–(kt + k0

(6)

gives the best fitting to the published data as function of time, t. From the computed

values of velocity constant, k, the activation energy was found to be Ea=182.5 kJ mol–1

and the frequency factor Z=2.5⋅1015 s–1. These results are to be compared with the ones

obtained by the neural network procedure.

Results and discussion

One neuron architecture

The time dependence of α was first investigated for an architecture with one neuron

in the hidden layer. Following the rule (1) and (2), and at the hidden layer, the state of

the neuron will be 1 1/[ ]
)+ +

e
–(w i w21 20 . At the output, the neuron is activated by a linear

function, with the values of the connections w32 and w30. The neural network output,

within this architecture, is, therefore, represented by,

o
w=

+
32

1 e
–(w i + w21 20 )

(7)

The residual error, Eq. (3), for the neural network approach and An models are

given in Fig. 2. The superiority of the neural network approach is already clear at this

stage. For one neural architecture the residual error has decreased by a factor of three

to seven when compared with the An model.

Table 1 Calculated values of the connections for one neuron architecture. Numbers in parenthesis
are for power of ten

Temperature/°C w21/min–1 w20 w32 w30

198.0 9.761 (–4) –13.95 0.8839 –1.083 (–2)

202.5 1.500 (–3) –14.12 0.9832 8.060 (–3)

203.5 1.697 (–3) –14.87 0.9786 5.036 (–3)

205.0 2.267 (–3) –14.24 0.9652 9.694 (–3)

207.0 2.303 (–3) –16.94 0.9018 2.026 (–2)

209.0 3.014 (–3) –21.45 0.9272 2.991 (–2)

210.5 3.524 (–3) –18.59 0.9186 4.734 (–2)

Activation energy for the decomposition process can, therefore, be recalculated

based on the above improved results. The values of the connections for one neuron

network and for the various temperatures are given in Table 1. The computed weight

of the connections w21 and w20 represent the constants k and k0 and are in agreement

with the previous published results [4]. In Fig. 3 the logarithm of w21 is plotted vs. the

inverse of absolute temperature, together with the results from [4]. The activation en-
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ergy and the frequency factor, calculated from the neural network model, are, respec-

tively, Ea=194.0 kJ mol–1 and Z=5.23⋅1016 s–1. The results from the neural network,

based on the residual error, Fig. 2, are expected to be more reliable.

Equation (7) suggests a reinterpretation for the An model. For large decomposition

time this model gives α=1. Nevertheless, this does not correspond to the real situation,

since this asymptotic values is, in practice, not equal to unity. By introducing the values

of the connections w32 and w30 the neural network procedure corrects this situation.

The correction on time scale can also be interpreted as the introducing of another

time scale, known as characteristic time scale, τ, first discussed in [1]. This new time
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Fig. 2 Errors as a function of temperature. The index for temperatures is 1 for 198°C, 2 for
202.5°C, 3 for 203.5°C, 4 for 205.0°C, 5 for 207.0°C, 6 for 209.0°C, 7 for 210.5°C.
Full line are for the An model and dashed line for the neural network results

Fig. 3 Logarithm dependence of velocity constant with the inverse of temperature.
Crosses are for the the neural network result and circle for the An model



scale is defined as t=pτ, where p is the probability of the germ nuclei being used up for

the new phase. In the present approach this probability corresponds to the value of the

connections w32. The time scale in the An model is approximately described by the time t.
Together with its physical aspect, the introduction of these two extra variables

increase the number of adjustable parameters into the problem, this will improve the

correlation between input and output.

Several neurons analysis

As the number of neurons in the hidden layer, Nneuron, is increased, the residual error

for the trained points, Etrain, will be reduced. The second column in Table 2 makes

clear this situation for T=205°C. Three to four significant figures can be obtained in

prediction the decomposition fraction for a given time at the training points. A much

better correlation between experimental data and neural network result is achieved in

this case. This improvement is evident in Fig. 4 in which the neural network output,

for Nneuron= 4, and the An fitting are confronted with the experimental data.

Table 2 Training interpolated and extrapolated errors for different number of neurons. Numbers
in parenthesis are for power of ten

Nneuron Etrain Einter Eextra

1 4.121(–2) 5.745(–2) 5.626(–2)

2 4.121(–2) 5.745(–2) 5.626(–2)

4 2.749(–3) 9.339(–3) 8.664(–3)

8 2.959(–3) 5.548(–3) 5.987(–3)

10 3.116(–3) 1.410(–2) 1.498(–2)

11 2.378(–3) 8.685(–2) 2.376(–1)

14 1.412(–1) 1.412(–1) 7.892(–1)

Two other errors are also important to test the robustness of the neural network

approach: (a) The interpolated error, Einter, related to points not used in the training

process and inside the training region; and (b) the extrapolated error, Eextra, for points

outside the above region. The third and fourth columns in Table 2 show these two

kinds of errors. Although the error for the training points continues to decay, the in-

terpolated and extrapolated errors increase, in an oscillatory way, after Nneuron=8. Up

to this number of neuron the same precision obtained for the training points can be

achieved for interpolated and extrapolated regions.

Further conclusions about the neural network performance can be obtained from

Fig. 5. For the same set of training points used in Fig. 4 and also with four neurons in

the hidden layer, the neural network framework was able to predict decomposition

fractions for time not used in the learning process. Furthermore, the present scheme

was also able to predict data, within four significant figures, outside the training region,

as shown in the Fig. 5. The neural network powerfulness is more evident at this point.
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The superior limit for the number of neurons can be established by finding the re-

gion in which the interpolated and extrapolated errors do not decrease as the number of

neurons increase, phenomena known as overfitting. For the present case, if more than

eight neurons are used, although the results for the trained points will be excellent (four

to five significant figures), the ability to predict points will not be reliable.
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Fig. 4 Time dependence of at T=205°C. Circles are for the neural network result,
crosses for the experimental result and triangle for the An model

Fig. 5 Time dependence of at T=205°C. Full line are for the training region, squares for the
interpolated data, stars for the extrapolated data and circles are for the neural net-
work result. The points used for the training process are as in the previous figure



Conclusions

An alternative approach to describe thermal decomposition data, using neural net-

work, has been discussed in the present work. Architecture with one hidden layer and

one to several neurons was used to introduce this alternative scheme. For one neuron

the residual error was decrease by a factor of three to seven when compared with the

An model. As a consequence of this improvement, a better estimation of the activation

energy and frequency factor was possible. A prediction of α can be attained within a

required accuracy, before the overfitting region has reached. It was possible to pre-

dict, with three to four significant figures, data not considered in the training process.

This can give valuable informations for the experimentalists.

Non-isothermal data represents no problem for the neural network approach.

Within the same framework presented in this paper, a neural network architecture can

be constructed to learn about the two dimensional data, α(t, T).

Usage of the neural network suggested also two alterations in the An model. The

first modification took into account the correct asymptotic value of the mass fraction

while the second modification changed the time scale.

Neural networks can be very useful to predict data for a wide range of tempera-

ture. For large temperatures, where the decomposition resembles a step function, the

neural can still gives excellent results. The general scheme presented here is not re-

stricted to the system under study and can be applied to any other one. This suggests

the technique can be used as a powerful routine method to study the chemistry of

solid state decompositions.

* * *
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